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BENDING,EXTENSION, AND TORSION OF NATURALLY TWISTED RODS' 

V.L. BERDICHEVSKII and L.A. STAROSEL'SKII 

Saint-Venant /l/ established that the spatial problem of linear elasticity 
theory of the deformation of straight rods with a load-free side surface 
allows Of DraCtiCally Cclnplete investigation: the extension problem is 
solved exactly (if the boundary layer is ignored), and the bending and 
torsion problems reduce to Neumann problems for the Laplace equation in 
the region of the rod cross-section (see /2, 3/). It is shown below 
that an analogous situation holds for a naturally twisted rod: the spatial 
problem is successfully reduced to a Neumann-type problem for a certain 
system of second-order elliptic equations in the cross-section. It is 
essential that this can be done for an arbitrary value of the rod twist. 
For zero twist the problem in the section reduces to the Saint-Venant 
problem. In the case of centrally-symmetric sections, the problem 
decomposes into two independent problems, on bending and on extension- 
torsion. Variational principles and certain bilateral estimates of the 
extension and torsion stiffness are constructed for the latter, and the 
case of oblong sections is investigated. 

The extension-torsion problem for naturally twisted rods was examined 
earlier in /4/. The difference from this research is discussed in Sect.4. 

1. The undeformed state. Consider a segment 0<2< 1 located on the i axis in 
a three-dimensional space referred to the Cartesian coordinates I' (the Latin superscripts 
run through the values 1, 2, 3). we.take a two-dimensional domain S in the 13 = 0 plane and 
we displace it along the z3 axis while simultaneously rotating it through an angle m = W3, 
0 = const around the x3 axis. A domain V of the type of domains displaced in Fig.la-lc is 
noted here. Fig.la corresponds to the case when the centre of gravity of the cross-section 
lies on the axis, and Fig.lb when the axis of rotation does not coincide with the line of the 
centres of gravity of the sections, as holds for turbine blades;Fig.lc is the case when the 
axis of rotation does not pass through the cross-section. In the later case, bodies of the 
type of springs are obtained, if S is a circle here, then an ellipse S ’ is obtained by a plane 
section through the spring perpendicular to the axial line r, i.e., this will be a spring with 
an elliptical section in the usual sense. The elliptical domain S corresponds to springs with 
circular section S'. 

An elastic bodlr occupying the domain V in the undeformed state is called a naturally 
twisted rod, while u is its twist. 

On the axis r3= x we introduce a unit orthogonal reference from the vectors ~1 (I),11 (r) 
and T. the vectcr T is directed along the I axis, and the vectors ~r.1~ are rotated during motion 
along the = axis with velocity U. The reference rl. T*. f is determined by the relationships 

TV’T,g = 6,,, TiT,’ = 0, TIT&= 1 (1.1) 

The Greek indices run through thevalues ~,Z;T~~.T' are components of the vector r=and T, 
respectively, r,:, are Levi-Civita symbcls (cl1 = a2? = 11. e,, = --ezl = 1). and summation is over 
repeated subscripts and superscripts. 

The transverse sections r = ~011.~1 occupy different domains in the variables 31, I for 
different values of r.and it is convenient to introduce new coordinates, 5", E in which the 
domain S is fixed. They are defined by the equalities 

E = J _ > J' = Tij - T,’ (E\ tq (1.2) 

The coordinates g" vary in the domain S, the coordinate E on the segment IO, II. The 
coordinates ? are accompanying for the domain S. 

Since T,B(E) is an orthogonal matrix, T=~= 0. T= = O,?= 1, then (1.2) can also be 
rewritten in the form rfi = T,F (i) t”. .T = E. According to (1.11, the matrix r$(E) satisfies 
the relationship dT,fi (g)'dE = we,;‘Tyf*. It can be confirmed that the following formulas hold 
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(1.3) 

We define the differentiation operation D for any arbitrary scalar function f(E=, E)by the 
formula 

(1.4) 

The dot before the superscript 01 denotes differentiation with respect to E= and the dot 
before the f differentiation with respect to E. The operator D has the following meaning: 

Fig.1 

The last two relationships in (1.3) must be 
used for the proof. 

If there is a vector with ccxnponents f= in 
the accaapanying coordinates, then we define the 
operator D by the equality 

The definition of the operator D for a second- 
rank tensor is analogously 

The operator D obviously possesses the properties of a covariant differentiation operator 

D (fg) = (of) g + f (Dg), D (fag=) = Pl=) ga -i I= Pg=) 

2. Equations of the spatial problem of elasticity theory in accompanying 
coordinates. Reduction of the spatial problem of ealsticity theory to a certain two- 
dimensional problem is based on the selection of projections of the displacements uli on the 
vectors T=. T: u.= = Toi (r) II',. 1L' = t T lPi, as the desired functions. The quantities W=,U are 

sought as functions of Ea. E. We emphasize that u+=and U' are not components of the displacement 
in the accompanying coordinate system E=. i. since the vectors I, and r coincide with the basis 

vectors of the accanpanying coordinate system only on the axis of rotation, while they are 
different off the axis. In a certain sense such a selection of the desired functions is 
analogous to the selection of the desired functions in the problem of fluid flow around a body 
in which the velocity components relative to an inertial reference system are considered as 
functions of strange coordinates, the coordinates of the inertial system coupled rigidly to 

the body. 
We introduce the system of equations of spatial elasticity theory in which all the 

functions are assumed to depend on ;=, E 

c=i L Da=3 = 0, 0:: _t IMJ= 0 (2.11 

IJ'D i= L(&,Y L &)&f j +e=s. c13 =2!LE=3 (2.2) 

033 = ;.Eyy + (?. + 2p)F33 

XE=~= u'=*~ f ~.~,a> 2s=1 =u',= + DC,, esS=Dw (3.3) 

(u'P-~~&%=~)vp = 0. (ua3- 0P==&33)v, = 0 on 8.Y (2.4) 

('.O are components of the normal to the boundary a.9 of the dcmain S). 1~ is seen the 
difference between the system of Eqs. (2.1)-(2.4) and the elasticity theory equations in 
Cartesian coordinates is the replacement of the operator 881 by the operator D and a certain 
complication of the boundary conditions in as. 

3. Equations for the integral characteristics. We define the vectors of the 
transverse force Q= and bending moments ~bf=. the torque M and the axial tensile force T by the 
formulas 

Qa = (GO), Ma = <&,>, M = (ea@SEfi?\, T = <o&b (3.1) 
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(the u.>) is the integral over the section S). We will derive equatians that the integral 
characteristics of the state of stress Q,,M,, ‘b1.T satisfy. To do this, we rewrite the 
equilibrium Eq.(Z.ll by taking account of the definition (1.41, (1.6) of the operator D in the 

The identities 

are used here. 
Integrating (3.2) over S and using the boundary conditions (2.4)) we have 

DQa = 0, DT = 0 (3.3) 

We note that for functions independent of ED, that are integral characteristics, the 
operator D applied to a scalar will agree, according to (1.4). with the derivative with respect 
to F and DT= 8T.a: while the operator D applied to a two-dimensional vector will, according 
to (1.61, have the form DQ_E aQ,J$ j w$Qa. 

NOW we multiply the second equation in (3.2) by E" and we integrate the result over S. 
Integrating by parts and using the boundary conditions (2.41, we obtain the equation 

Ddf, = Qa (3.4) 

Convoluting the first equation of (3.2) with e,,{O and integrating over S, we find as 
before 

DM = 0 (3.5) 

Eqs.(3.3)--13.5) are the equilibrium equations of one-dimensional rod theory and mean that 
the tensile force and torque are constant along the axis, the transverse force is constant in 
the sense that a(Cfa~=)a$ = 0. while the bending moments are related to the transverse forces 
by means of (3.4). 

4. Problem on extension-torsion. The possibility of an independent investigation 
of the extension-torsion problem is related to the symmetry properties of the transverse 
section. Later in Sect.10 it will follow from the above that for rods with centrally symmetric 
transverse section (the section contains the point -Fain addition to each point ga), the 
bending problem is separated from the extension-torsion problem. We shall consider the section 
centrally symmetric and we consider the deformation of a rod for which the displacements have 
the form 

u: = yi 2 u,'(i?), u',= $lEe,# i u.,'@) (4.1) 

where p, n are certain constants, while wr and uh' are functions of the coordinates of the 
transverse section which will be sought later. Since the functions u'. U.* are not encountered 
in subsequent formulas, the primes are omitted on u.'. us%*. 

Evaluating the deformation, we have 

It is seen that the deformaticn is independent of 5. consequently the stresses will also 
be independent of i. Therefore, the system of equations will consist of the equilibrium 

the equations of state (2.2>, the kinematic relationships (4.2), and the boundary conditions 

(2.4). The conditions for the integratility of problem (4.3), (2.4) are satisfied because 
of the evident equalities Q"=<P>/ =O. If it is rewritten in terms of the functions BL‘. Kc 
a system- of three-second-order equations is obtained in the domain S with Neumann-type boundary 
conditions. For zero twist o the equations reduce to the appropriate Saint-Venant type equations. 

Renaxk. The problem of extension-torsion of a naturally twisted red was considered in /4/. 
In this paper there are basic considerations about the selection of dependences of the projectionr 
of the displacements on the Cartesian axes on the accanpanying coordinates as desired functions. 
The difference from what is elucidated above is in the selection of the displacement modes. 
They are taken in the form (compare with (4.1)) 

Ic = -r's +*(<a), u'== S1$$ + I(:v),a - ho KY) 

and comprise equations to deterrrine the desired functions $,.l.o. In this connection, equat1or.s 
of higher order were obtained than those which can be obtained by starting frorc (4.1) and (4.3) - 
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Therefore, the result of Sect.4 can be interpreted as proof of the possibility of reducing the 
Order of the system of governing Eqs.141. 

5. Variational principle. A system of equations of the extension-torsion problem for 
a rod can be obtained as a system of Euler equations for the functional 

Z=<Q (5.2) 

where the deformation canponents are expressed in terms of the functions w,Wa by means Of 
(4.2) and the minimum is sought over all functions w,ru, for fixed parameters p and Q2. This 
assertion is confirmed by direct calculation. 

If solid motions are eliminatedbythe conditions 

<WY, = 0, ge,p+&) = 0 

then the functional (5.1) beccunes strictly convex and it can be asserted that the solution of 
the problem exists and is unique. 

The lower boundary of the functional 1 is a quadratic form in the parameters y and Q 

z = '/*(Ey? + 2ByR -t- CP) (5.2) 

The following formulas hold 

T = al.'@ -5 Ey + BQ, M = t?l,‘&2 = By + CR (5.3) 

Consequently, the coefficient Ehas the meaning of an effective Young's modulus, the 
coefficient C is the rod torsion stiffness, and the coefficient B describes the cross effect 
of the origination of extension forces during torsion and of a torque during tension. 

Let us prove (5.3). We give arbitrary increments &,&a to the parameters y and 9. The 
minimizing functions u.* and ~2 also receive certain increments dw",6u,* here. The change in 
the minimum value of the functional &i will equal 

&I= (@,&6Q + o%y> = M6R + T6y (5.4) 

The terms containing 61~" and 6~~' are cancelled by virtue of the Euler equations of the 
functional 4. And (5.3) follows from (5.4) and (5.2). 

6. Dual variational principle and stress functions. The dual variational 
principle is formulated as follows: 

I= supI<oz3e~>~~>r! + {~~~>y-<(v*>] _ (G.4) 

u* X=[(l -+ Y)(U%,; + 2u='3u13 + (@)*) -v(u,a + u=)z]/(2E) 

Here the upper bound is sought over all functions o"p. ~9, a33 satisfying the equilibrium 
Eqs.(4.3) andthe boundary conditions (2.4). It is constructed according to the general rule 
c/5/, Sect.3, Ch.11). 

We construct the general solution of (4.3) by introducing the appropriate stress functions, 
The second equation of (4.3) means that a function x exists such that the following equality 
holds: 

(6.2) 
The quantity a33 does not occur in the first equation in (4.3>, hence, os3 and y. can be 

regarded as arbitrary functions, and Eqs.(6.2) here express the quantity LlQ in terms of us3 
and Xv 

We examine the expression we.; ofi3 . in the first equation of (4.3). According to (6.2) it 
can be rewritten in the form 

G)p$yi?s=v,L~? -Qjq!W (6.3) 
Without loss of generality, the function uz3 can be represented in the form 

$3 = 3J‘ - 5"q ,v (6.4) 
Indeed, (6.4) in the r.@ polar coordinate system reduces to the ordinary differential 

equation 3JT T r&j'& = es3, which enables $ to be evaluated in terms of 033. 
Direct substitution verifies that after (6.4) has been substituted, (6.3) reduces to the 

equation 

By virtue of (6.5) the first equilibrium equation in (4.3) takes the form 

(&--&$OoaS f ok&+ - o%@E~)$=O (6.6) 
which means that functions rf= exist such that 

(i@--e$$Q19 - o%S~e_-o2J)~IB=ee}.c~:~ (6.i) 
It remains to satisfy the symmetry condition of the tensor 6 in a. $ which is obtained 

by convolution of Eq.(6.7) with Pfi 

O&aaS= (FP~=oS~~~BX,E=(~~~FE,X),* (6.8) 
The relationship (6.2) is used here. Formula (6.8) means that the vector q(" -Y- oPb$y. has 



zero divergence, i.e., a function v exists such that 

c~a + @fi&ix=@@q~~j3 (6.9) 
Thus, the general solution of the equilibrium equation is expressed in terms of three 

functions IJ,J' and x by means of the formulas 

(6.10) 

The function q is the analogue of the Airy function while the function x is the torsion 
function. 

Let us determine what arbitrariness remains in the stress functions for a fixed state of 
stress. It is evidently sufficient to consider the case of a zero state of stress. Setting 
IJG = I+ =; $3 = 0, we obtain 

x,~ ~0, 39 j EV$,V= 0, P~e~h~,,~-2w~ba~+ c&p@@=0 

It follows from the first equation that x = c = const, The second equation is integrated 
in polar coordinates: 9 = a (%)@. We will consider the origin to lie in the domain S and 
the stress functions under consideration to have no singularities in S. Then Q= 0 and the 
third equation yields q = const T c,t" -i- ~c!~E~. where c, are constants. Thus, the function x 
is determined, apart from the constant c, the function cp to the accuracy of a linear function, 
and the term ocSaFa while the function $ has no arbitrariness. 

According to (6.2) and the second boundary condition (2.4), the function x is constant 
on as. According to (6.?), (6.9) and the first boundary condition (2.41, the function y 
satisfies the following equation on the boundary of the domain S 

(6.11) 

Here s is the length of the arc along 8s. and it is assumed that the dcmain S remains 
on the left during motion along its in the direction of the tangent vector T= = dt" rls while 
the normal vector I‘= is directed outside S SC that Yz = e=$a 71. = &$ I * A 

In a simply-connected domain the function % can be assumed to be zero on as. consequently, 
the relationship (6.11) between q and q acquires the form 

-g- (e”Q 5) = - A$;‘&‘6 (G.12) 

We consider the functicnal in (6.1: as a functional of the functions ~$,q- and x.which is 
obtained by substituting (6.10) into (6.1) instead of the stress tensor components. The dual 
variational principle in the stress functions is formulated as follows: the true state of stress 
brings the maximum tc the functional in (6.1' in the set of functions CF. J'. 1 satisfying the 
constraint (6.11) and the condition x = con5t on 8s. For a simply-connected domain they can 
be replaced by (6.12) and the condition x=0 on 8s. 

7. Some estimates, The roughest estimate of the effective stiffnesses is obtained 
ifweset U' = w% = 0. We have from (5-l), (5.2; and (4.21 

1 : (E.j’ - 2B$ - CO’) ,< ’ * I(>. - 21) / s j i‘? - pI,%N 

Here the inertia tensor o f the transverse section is denoted by J?b =$i*Efi);. and 1 .L? / is 
the area of the domain S. A more exact estimate is obtained if we set U', = Cl?,. I(' = 1 *hap,SGEF 
and the unknown coefficients a and b,, are sought from the conditicn of the minimum of the 
functional (5.1). Then we find from (S,l), (5.2) and (4.2) 

f &El," - 2ByQ - CR*) q '/*(-tj'l'? - 23'yQ T C"1??) (7.1) 

E- = E I j s 1 - 2 (1 7 Y) 02 (I, - I,)? .I1 
B- = --ELI (1, - I*)%.3 

If the rod is not twisted (~2 = 0). then, as is easy to see, B = 0 and the inequality 
(7.1) reduces to the estimate E < E; .?i.cg bf~f,f,‘(f,-- j2). The former yields the exact value 
of the longitudinal stiffness for anuntwisted rod, while the latter is the Nikolai inequality 

/6/. 
If the twist o is not zerc, ineau;lity (7.1) reduces to three estimates _ 
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E < E’, (B’ - By Q (C’ - C) (E’ - E), c < C’ (7.2) 
The quantity A in (7.1) is non-negative, hence .!? decreases as the twist increases. 

Therefore, according to (7.2) the effective Young's modulus of a twisted rod with arbitrary 
transverse section is less than for an untwisted rod with the same transverse section. In 
the limit as (o-+00 the quantity E+ reduces to the value 

E 1 S 1 Ii - (1 + v) (1 - 2v) (x - 2v*)-II, 
x = (I - v) I 6s I ((El* - vn (I, - I*)-’ 

The second inequality estimates the amplitude of the cross effect. The third is a 
generalization of the Nikolai inequality to a naturally twisted rod. 

We present the values of E+, B+, C+ for elliptical sections (&*/UP + &*i&*< 3) With semi- 

axis ratio c = b/a 
E' =: ,&nb 11 - 3 (1 -I- V) (1 - C*)*.(2 (1 + c* + Sa))l (7.3) 

B+ = .-Eonba3 (1 - c*)*/'(4 (1 $ c* + &*a)) 

c = @as [cp $ W (1 -t- c*) a/41/(1 + c* + hSPa) 

P = au, a = [(i - v - v*) (1 -+ C’) - */SE* (1 - V - 3V’)li(l - 2Vf 

The estimates (7.2) are valid for rods with arbitrary centrally symmetric section. In 
order to characterize the error of these estimates , we construct a lower bound of the effective 
characteristics for an elliptical section. We set x = A (&Vu* + f;12/b2 - I), cp = ‘1, (&&* + 

B*E**), A, 4, 4 are constants. Then the boundary condition for x is satisfied while the 
boundary condition for (6.12) takes the form 

@,'a* + o*$) E1 = 0, (B,‘bZ -i- 09) EP = 0 (7.4) 

We take the simplest expression for the function q, thus $ = B:02. The condition (7.4) 
will be satisfied if we set B, = -Bb2,B, = -Ba2. We select the constants A and B from the 
condition of maximum of the functional (6.1). We obtain from (6.10) and (6.1) 

1:* (E-y* + 2L?-ST! -/- c-q< I:* (&I+ + 2ByZl + CQ2) 

E- = E@> E* = E 1 S ) II T_ Ls* (1 + V) (1 - c2)2,'(2 (1 i cZ))l 

B- = -Emba3 (1 - c*y< (4( 1 + 9)) 

c-=p ~{~~5;*~3(l+~~)*(l-c*)~-8fl+V)C*(I+c‘)- 

8 (38 + 221,) C’] 148 (1 +- F) c* (1 f c2)]-‘} 

(7.5) 

The expressions for E-,B-,C- a re presented fox the case of small twists ?Z (the terms 
containing Ei* and higher powers of 3 are omitted) and c< 1. It is seen from a comparison 
of (7.3) and (7.5) that for small B the upper and lower bounds of the effective Young's 
modulus converge for rods of elliptical section and define its exact value: I? =I'= E-=E,. 
Tie difference between the effective Yoing's modulus of the twisted and untwisted rods is 
characterized by the following numbers: for Z = 0.5. c = 0.1, v =0.3 the effective Young's 
modulus for the twisted red is 16% less. 

The expressions for C' and C- do not agree in the case of small twists. This indicates 
that the selected allowable fields are good enough to approximate the state of stress caused 
by extension and unsatisfactory to describe torsion. 

The cross coefficients in the lower and upper estimates 6- and B- agree in the limit Of 
small twists: however, because of the difference between C and C’ this does not enable us to 
give an exact value of 8. 

The case when the problem contains small parameters. small twist or small thickness of the 
transverse section (elongated section), allows of a full asymptotic investigation. 

We consider here the case of rods with elongated sections, which is often encountered in 
engineering applications (see /7/I. 

8. Elongated sections. We consider a rod with cross-sections for which the coordinate 
axes are the axes of symmetry. We consider part of the boundary aS with & >, 0 to be projected 
single-valuedly on the axis :, and its equation to be written in the form fn= h(&,l,f&[<o. We 
let b denote the maximum value of h. By assumption h is an even function of &. that varies 
slightly at distances of the order of b and b<o. 

We perform an asymptotic analysis of the functional (5.1). We rewrite the elastic energy 
density in the form 

21‘ = Es&.- P@e Pap + vr&,& (VT* + V;.JS6t.6) + 4p?,$=s 63.9 
Ea.-?‘& _ ;,&=&,>6 + ‘, [bO-‘,+f L $Y@) 

The strain is replaced in (8.1) by their expression in terms of the displacement (4.21, 
and new desired functicns t',L are introduced in place of usa by means of the formula u'== 
-qE, - t',. We obtain 
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(8.2) 

It is seen from this expression that the minimizing functions u and V, are odd functions 

of gX (and therefore equal zero for & = 0). while ~',is an even function of &. The proof is 

carried out exactly as the proof of the analogous assertion in /8/. 

We shall assume that the twist not small and no-l. We will find the orders of the 
desired functions. Poisson's ratio is obviously not essential in determining the orders of 

the functions; consequently we assume %= 0. 

If p= R = (1. then the minimizing functions of the functional 'U also equal zero. The 

difference of the solutions from zero is generated by the cross terms between Y,R and the 

desired functions. Consequently, a rough estimation of the orders reduces to retaining just 

the principal terms in the desired functions and the practical cross terms in the functional. 

In extracting the principal terms we consider the derivatives of the desired functions with 

respect to k1 to be very much greater than the derivatives with respect to II. For this 
reason, all the underlined terms in (8.2) can be discarded as small compared with the preceding 

terms. Keeping the principal terms in U we obtain 

21.<,:= - 2E,:.i,11- *” 4. + /,.? i “,? 3 \ I -I 7 "i.2 P ! - ?&!!Q - 252 a,,.,, :) f (6.3) 

p (u.i$_ 2L. *:I ! - z?‘,, “!!I, - 2tii!i1VZ, :i _ 

Here all the cress terms between the desired functions are omitted since a rough estimate 

is made of the orders; moreover the terms Eti2j,ZU..22 and ~o*E,~R 12 which have the same form as 

the retained terms F'u'.?* and P'~.:?. are omitted, and do not influence the order of the desired 

functions. Minimizing the sinpllfied functional with respect to w and c?. we find iit is 

here necessary to take into account that u = c'*- 
ii _ *b @ _ ,::.;?o:& = II) lb.41 

However, the problem of the minim‘um of the fUnC?iOnal c0 with respect to r, turns cut 

tc be incorrect: shifts in z', by a constant can carry the value of the functional tG -x 

Consequently, the intitial ass&mpticn on the nature of the behaviour of r1 must be altered 

somewhat. We extract the constant compcnent in & from the function I]. Without loss cf 

generality, we can write c1 = u (5)) - j' :E1 F2 where the function v satisfies the condition : = 
0 C’., is the integral with respect to & within the limits l--b. blj. We consider that 1 I‘,: I,, r,. 
and by defining u&i, we findtheorder of i. The principal term in i' will be }I:,~~. theprincipal 

cross term between v and I! is --_?PoQ:~::',?. the cross term ~!Iw%I,;. equals zerobyvirtue of the 
condition :L‘ = 0. The problemof finding t is now correct and shows that :-o!AK! 

For lc = Z.cL = ii the value of the functicnal has the order !( (72 - $0:) oh. It is clear that 

this is the greatest possible order cf any cf the energy terms. We write u., for the greatest 

possible order y T u!!. and u for the order I;'-- 09 o and we extract the principal terms in the 

energy (6.2) by using the estiaz:es cited. Keeping Only the principal terms we Obtain 

,$? 
2L: = E (.;- &,K, ?)* $ --&- &,?u.~? i- 1. iu. 1 + 5.? + (8.5) 

2jI (Gl+ 12 ,I - 2%, (U 
-/ - 31 1 1'2,Z) i,w, " + &' iv, ?- fii! + OIL-- c&V? $ 

All the terms in the energy are of the order I-' (',' $ US?!? (for oo- 1). and all the discarded 

terms are higher-order iafin;tesimals. Therefcre, (6.5: yields the value of the energy tc e 

first approxlaation. 
The energy dependscn -he funCtiCnS u‘zE2 r2 or.ly II-I tems of the derivatives w,~ and L'~,*. 

Consequent?;-, IC,* and IZ$,* can be selected as new independent desired functions. Then minimizing 

r,;sf;:t,:;;,;;', 1 reduces to an algebraic problem of minimizing the quadratic 

12 and u*,~. The minimum is achieved on the functions 

1'1 = - D-1 [VW"&: T XII, 1 - pJ?:,u - -g (i.w:,:u, 1 + (i. + p) cl& (pi? + 

wE*;) - i.p.$~, (u - :lu *I ) - pw:,u 1 c2 
- J . * U’ = A-’ I&Q + Etlg,y _t /.oi, (li,, + Lz,p i -+ I”&‘.*,* - P4 Ez 

D iii i. + 2p + [p - (i. + p)*/A] f&z, .4 = p + iE + i.V(i. + p)]oZ&a 

The energy here becomes a functional Of u 

(8.6) 
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This problem reduces to solving one ordinary second-order differential equation with 
variable coefficients and is a ccmputer problem in the general case. 

9. Rods with elongated elliptical sections, Let h(f,)=~~. In place of the 
variable E, we introduce the variable s by means of the formula tX= oco~r,Oir~s and we 
define the dimensionless displacement and the initial twist by the equalities Y = air, iz= 00, 

P-00. Then according to (5.2) and (8.6), the effective stiffnesses are given by the formulas 

The functions .j$,,:. I~:; that yield the minimum of the functicnals (9.1) and (9.2: are 
found from the solution of the boundary value problems 

6" i,,:>.r~ + z. IUO.?).X - ZU = - :(,,z,: Gr, :, i r 0 for z=o,., * . (9.3) 

In the case of small twists, the effective mcduli are found analytically 

E = E [.,bo - I/? (1 + v) rrbe.‘), B = -‘,‘,Errbo3. 
C = I:# (I + y)nbnjl 

Within the framework of the asymptotic expression under consideration b!a&i the torsional 
stiffness C is not in the clssical term pnb2.'a since it is small asymptotically with respect 
to that written down (for 5-l). It is seen that the effective Young's modulus decreases as 
the rod twists while the torsional stiffness increases. 

Problems (9.3) were solved by grid factorization. The effective mtiuli E,B,i were 

evaluated by numerical integration. The values of the functions E, = E. (SEbal. E, = B/(ZEbe). C, = 

C/(28 bo) are represented in Fig.2 as functions of the parameter 2;; for different Poisson's 
ratios r. where the solid lines refer to 3,. the dashes to C,.and the dash-dot lines to E.. The 
graphs show that as the twist increases the torsional stiffness grows although EG 1.1-1.2. and 
then starts to decrease, The cross coefficient B, behaves analogously, while the cross effects 



Fig.2 

are most noticeable for values of the twist of 0.7- 

0.0. The effective Young's ~~odulus decreases mono- 
tonically as the twist grows. 

The presence of the descending branch for the 
effective coefficients can be explained as follows: 
for small twists practically the whole section operates 
at torsion and extension, while for large twists only 
the "nucleus" of the section operates, that shrinks 
to the maximal circle inscribed in the cross-section 
as the twist grows. 

10. Reduction of the system of equations 
of the spatial theory of elasticity to systems 
of two-dimensional equations on a rod section. 
Let us formulate a general method for passPng from the 
system of three-dimensional Eqs.(2.1)-(2.4) to systems 
of equations on sections of a naturally twisted rod. 
We will seek the solution of problem (2.1)-(2.4) in 

Here T, ,?I are the tensile force and torque, Q=. 
.lfO are components of the transverse force and bending 
mcment vectors for which the change along the axis 

is given by equilibrium integral Eqr.(3.3)-(3.51, u($).u~(:) are the longitudinal. and 
transverse displacements of the axis, e(i) is the angle of rotation in the plane of the section, 

VU are the transverse angles of section rotation including the shear, !,O. !". g,O, g". to. t. 
r,. 7 are the desired functions of the coordinate ?. Without loss of generality, conditions 
determining the sense of the kinematic variable U. u,. 0.4% can be imposed or. the functions in 
the displacement (10.1): 

/f,“, z.z “eA”, = ,c,. = “Fe‘ zz.c “I”. = ‘p” z!zz :‘e> = Tr, = 0 n *, (KG) 

e:; ,iaCiF; = c$ ~!~g~~~~.j = e$ $e_@j, = c?i <r,ifi; = 0 (10.31 

: f@;% = (go:“, = $, \ 
/’ :a> = ‘I$,, = 0 (10.4) 

We express the deformation (2.3) in terms of the displacement (10.1) 

F,~=,f&,j& + .&i r,.tl, i e,,fii.lf T ‘im.@T (10.5) 

2F 53 sax (Cn - UP,+? - if’-? - Di,’ i g,“) Qn -; (gTu + Dgz”) .lf, T 

(C CA - De-) .V - (r., - Dr,, i 7 
0 :; _ F33 = y - __*: ( Of’ T g”)Qc;-- .lI,Dp~ A .11De -L TDr 

" zzz (1, :,, !!::= Dy, 

The quantities ;'. !!,. $2. gS in (10.5) have the meaning of "rod" measures of the extension 
of the axis, the bending, the tcrsion, and the shear. We relate them to the forces and 
moments by using the compliance matrix 

;'= PQ'- - p".ll, T tT - (111 (1O.Gj 

ya = o::“Q, - b,~.lJ, T .‘t,T - s,.ll 

0, = cc”?, L. dma.lJ, 2 p,T - yl. II 

9 = I”()~ + j”‘.lI, T iT 7 j,lf 

The coefficients of the compliance matrix are still undetermined constants. We calculate 
the stress (2.2) by means of the strain (10.5) under the condition (10.6) and we substitute 
it into system (2.1) and the boundary conditions (2.4). Equating the coefficients of the 
forces and moments to zero, we obtain a system of two-dimensional equations in the desired 
functions fea. fO. g,O, p. e,. e. r,. r: 

i. [(W), % _L gP,i + j;‘& +- p [2.&;0,,;, + Dfa T D?,f,= + 2DgxO _t (10.7) 

gpp]-r i.cuc - p [ Daar 7- b,O + e,@ (DP + j”)] = 0 

p f.c: -j- (DL”),“i g:? J f 0% - 2~) (DW- 2Bg”) i- A (DE i- g:) -i- 
(1. j 2~) [ Dt= + p" + Fp (DC=” f doa)] = 0 

;[ ;;;i a + g:. z] f p (zgp,. $, - Dg:, $ D*g,“) + ;A0 -+ (1O.S) 
a” + +#Lljq = 0 
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(10.9) 

(10.10) 

(10.11) 

(10.12) 

(10.13) 

[p (e,, + Lb.) - w&’ (0. + 2lr) De + he,?) f or (sa -k ewJ?i) ‘- 
(2. + 211) we& (p + E’qy)] v.’ = 0 

fh (Dr -+ r+Y) &B -I- P (2rt,, R, - w,# (r. = -f- DrJ) + (10,14) 
5 (t f p&“) s,, - p’M& (h, + c&i)] VB = 0 

ir (r, d + Llr,) - w&’ ((A + $1 Dr i Xr$ + P (k -+ e&W - 
(A + 2& w&o (1 + svpf)] va = 0 

Problem (lo.?)-(10.14) consists of sixEqsJl0.8) with boundary conditions (10.121 in 
the six functions gr,g,*, sixEqs.(lO.?) with the boundary conditions (10.11) in the 12 
desired functions ~,g,',jt,j~~ and two systems of identical structure (10.91, (10.101 with 
the boundary conditions (10.131, (10.14) in the three desired functions e,e, and r,ry, respectively 
in each. Under the constraints (10.2)-(10.41, problem (10.7)-(10.14) with the addition of 
the equation of state (3.1) is solvable single-valuedly. 

The functions jvT, gJ, j', gr and e,, e, r,, r respectively characterize the bending and 
stretching-torsion of the rod. In the general case, the solution of the bending problem is 
combined with the problem of longitudinally torsional deformation in terms of the coefficients 
of the compliance matrix. If the axis of the natural twist xs coincides with the axis of the 
centres of gravity of the transverse sections, and the section is centrally-symmetric about 
this axis, it can be confirmed that the problem of rod deformation deccrnposes into two 
independent problems, one of which describes the bending and the other the longitudinally 
torsional deformations. 

1. 

2. 
3. 

4. 

5. 

6. 
7, 
8. 

REFERENCES 

SAINT-VENANT B., Memoir on prism torsion. Memoir on prism bending. Ser. "Klassika 
estestvoznaniya" Fizmatgiz, Moscow, 1961. 

ARIJTYUNYAN N.KH. and ABRAMYAN B.L., Torsion of Elastic Bodies, Fizmatgiz, Moscow, 1963. 

MUSKHELISHVILI N.I., Certain Fundamental Problems of the Mathematical Theory of Elasticity. 
Nauka, Moscow, 1966. 

NARCHENKO V.M., Extension and torsion of naturally twisted rods. Trudy TsAGI, vyp. 720, 
1958. 

BERDICHEVSKIY V.L., Variational Principles of the Mechanics of a Continuous Medium. Nauka, 
MOSCOW, 1983. 

NIKOLAI E.L, Research in Mechanics. GITTL, Moscow, 1955. 
VOROB’EV YF3.S. and SH0P.R B.F., Theory of Twisted Rods. Naukova Dumka, Kiev, 1983. 
~DIC~~KII V.L. and KVASHNINA S-S., On equations describing the transverse vibrations 
of elastic rods, PMM, 40, 1, 1976. 

Translated by M.D.F. 


