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BENDING, EXTENSION. AND TORSION OF NATURALLY TWISTED RODS”
V.L. BERDICHEVSKII and L.A. STAROSEL'SKII

Saint-Venant /1/ established that the spatial problem of linear elasticity
theory of the deformation of straight rods with a load-free side surface
allows of practically complete investigation: the extension problem is
solved exactly (if the boundary layer is ignored), and the bending and
torsion problems reduce to Neumann problems for the Laplace equation in
the region of the rod cross-section (see /2, 3/). It is shown below
that an analogous situation holds for a naturally twisted rod: the spatial
problem is successfully reduced to a Neumann-type problem for a certain
system of second-order elliptic equations in the cross-section. It is
essential that this can be done for an arbitrary value of the rod twist.
For zero twist the problem in the section reduces to the Saint-Venant
problem. In the case of centrally-symmetric sections, the problem
decomposes into twe independent problems, on bending and on extension-
torsion. Variational principles and certain bilateral estimates of the
extension and torsion stiffness are constructed for the latter, and the
case of oblong sections is investigated.

The extension-torsion problem for naturally twisted rods was examined
earlier in /4/. The difference from this research is discussed in Sect.4.

1. The undeformed state. Consider a segment O0<(z®<{! located on the z* axis in
a three-dimensional space referred to the Cartesian coordinates 7' (the Latin superscripts
run through the values 1, 2, 3). We.take a two-dimensional domain § in the 7 = ( plane and
we displace it along the =z°® axis while simultanecusly rotating it through an angle ¢ = w1’
® = const around the 2% axis. A domain V of the type of domains displaced in Fig.la—lc is
noted here. Fig.la corresponds to the case when the centre of gravity of the cross-section
lies on the axis, and Fig.lb when the axis of rotation does not coincide with the line of the
centres of gravity of the sections, as holds for turbine blades; Fig.lc is the case when the
axis of rotation does not pass through the cross-section. In the later case, bodies of the
type of springs are obtained, if S is a circle here, then an ellipse S' is obtained by a plane
section through the spring perpendicular to the axial line I', i.e., this will be a spring with
an elliptical secticn in the usual sense. The elliptical domain § corresponds to springs with
circular section S'.

An elastic bodv occupying the domain V in the undeformed state is called a naturally
twisted rod, while w 1is its twist.

On the axis x®= r we introduce a unit orthogonal reference from the vectors 1, (z), Tp (7)
and 1. the vecter 1 is directed along the z axis, and the vectors T1,.T, are rotated during motion
along the r axis with velocity w. The reference T1,.7, T is determined by the relationships

dra’: (z)
dr

=y T (x), Te'Tia=0ue, T =0, Tr=1 (1.1)

2.1, 1" are components of the vector 1, and T,
€0 = U, €, = —&y, = 1), and summation is over

The Greek indices rur through the values
respectively, ¢, are Levi-Civita symbcls (e,
repeated subscripts and superscripts.

The transverse sections =z = const occupy different domains in the variables z*. r for
different values of r, and it is convenient to introduce new cocrdinates, t2 t in which the
domain S is fixed. They are defined by the equalities

1,

t=1, r'=1i+ /G (1.2)

The coordinates & vary in the domain S, the coordinate t on the segment [0,1]. The
coordinates ¢* are accompanying for the domain S.

Since 1,8 (%) is an orthogonal matrix, To° =0.1* = 0,1 =1, then (1.2) can also be
rewritten in the form 2P = Tof (§) % x = £ According to (1.1), the matrix TP (&) satisfies
the relationship dt.B (§)dE = we ¥1.p. It can be confirmed that the following formulas hold
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= T4 we tary, == T (1.3)
43 A

= T g = e

We define the differentiation operation D for any arbitrary scalar function f (&2, §) by the
formula
Df=f— 0o, (1.4)

The dot before the superscript a denotes differentiation with respect to !2 and the dot

before the ! differentiation with respect to {. The operator D has the following meaning:
D/ = 6)‘/61 Ixa=cons( (15)

The last two relationships in (1.3) must be
used for the proof.

If there is a vector with components f¢ in
the accempanying coordinates, then we define the
operator D by the equality

(D) Tg = 2Ta) =y — 0l + fued) . (1.6)

6z  |xZ=const

The definition of the operator D for a second-
rank tensor is analogously

a
(Df*®) 17 = rry (1%8%0%0) La e const =

Fig.l (18 — wetof% — wedfob + wefa%) oty

The operator D obviously possesses the properties of a covariant differentiation operator
D (fg) = (Df) g + [ (Dg), D (f*gs) = (Df*) &a + f* (Dg,)

2. Equations of the spatial problem of elasticity theory in accompanying
coordinates. Reduction of the spatial problem of ealsticity theory to a certain two-
dimensional problem is based on the selection of projections of the displacements v' on the
vectors To. T U, = T (r) w;. w = t'u,, as the desired functions. The quantities u,. w are
sought as functions of §2. . We emphasize that uw, anéd w are not components of the displacement
in the accompanying coordinate system £%. £, since the vectors T, and t coincide with the basis
vectors of the accompanying coordinate system only on the axis of rotation, while they are
different off the axis. In a certain sense such a selection of the desired functions is
analogous to the selection of the desired functions in the problem of fluid flow around a body
in which the velocity components relative to an inertial reference system are considered as
functions of strange coordinates, the coordinates of the inertial system coupled rigidly to
the body.

We introduce the system of eguations of spatial elasticity theory in which all the
functions are assumed to depend on o, %

0+ Do =0, o™+ Do¥=0 (2.4
o4 = }. (eyY — €33) buf - 2}18“5, a8 — 2y.s’3 (2.2)
0% == J.ey¥ & (1 + 2) £33
2608 = Wa, g+ Up, a1 26as=U, o+ Dy, &33=Du (2.3)
(o%P — me{‘i"o"”) ve=0, (0% — ez %) vo=0 on 85 (2.4)
(Va are components of the normal to the boundary &S of the daomain S). It is seen the

difference between the system of Egs.(2.1)~(2.4) and the elasticity theory equations in
Cartesian coordinates is the replacement of the operator d@.dr by the operator D and a certain
complication of the boundary conditions in 4S.

3. Equations for the integral characteristics. we define the vectors of the
transverse force (, and bending moments M,. the torque M and the axial tensile force T by the
formulas

e = {Cas), M,= (033§a>v M= (8:;30“&,)\» T'= (D) (3. 1)
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(the «.» 1is the integral over the section S). We will derive equations that the integral
characteristics of the state of stress (g, M, M, T satisfy. To do this, we rewrite the
equilibrium Eg.{(2.1) by taking account of the definition (1.4), (1.6) of the operator D in the
form
{o78 — meg,%"o“}, 8+ 0% + wey B =10 (3.2)
(0% — wegt0%), o + 073 =0

The identities
(0e80%), g = weg §%7}
(0es870™), , = 2egto0Ty
are used here.
Integrating (3.2) over 5§ and using the boundary conditions (2.4), we have
D@y, =0, DT =0 (3.3)
We note that for functions independent of &%, that are integral characteristics, the
operator D applied to a scalar will agree, according to (1.4}, with the derivative with respect
to t and DT = 8T8t while the operator D applied to a two-dimensional vector will, according
to {1.6), have the form D@, = 30,8t + we%Q,.
Now we multiply the second equation in (3.2} by §= and we integrate the result over S.
Integrating by parts and using the boundary conditions (2.4), we cbtain the equation

DM, = Qq (3.4)
Convoluting the first equation of (3,2) with €4f° and integrating over S, we find as
before
DM =20 {3.5)

Egs. (3.3)—(3.5) are the equilibrium equations of one-dimensional rod theory and mean that
the tensile force and torque are constant along the axis, the transverse force is constant in
the sense that 4 (Q%1,) 8t = 0, while the bending momentg are related to the transverse forces
by means of (3.4).

4., Problem on extension-torsion. The possibility of an independent investigation
of the extension-torsion problem is related to the symmetry properties of the transverse
section. Later in Sect.lO it will follow from the above that for rods with centrally symmetric
transverse section (the section contains the point —E% in addition to each point 1), the
bending problem is separated from the extension-torsion problem. We shall consider the section
centrally symmetric and we consider the deformation of a rod for which the displacements have
the form

w=yi+uw (), wa= Qbeapd® - wa' (&) 4.1
where v, ( are certain constants, while ¥’ and u, are functions of the coordinates of the
transverse section which will be sought later. Since the functions w, ¥, are not encountered
in subsequent formulas, the primes are omitted on u’. wg'.

Evaluating the deformation, we have

eyp =y p — Wp g, 280y = Qeg it — wp— ;\)";P-U'F, - (4.2)
me;@?‘u'u, oy E3z== Y — '_‘)e'r;”,il:u',a

It is seen that the deformation is independent of §. conseqguently the stresses will also
be independent of !. Therefore, the system of equations will consist of the equilibrium
egquaticns ) . .
(07F — weE°077) ¢ -— wey'a™ = 0 (4.3)
(073 e e 8003y [, =0

the equations of state (2.2}, the kinematic relationships (4.2}, and the boundary conditions
(2.4). The conditions for the integrability of problem {(4.3), (2.4) are satisfied because

of the evident equalities (*={o%®% =0. 1If it is rewritten in terms of the functions wu, Uq

a system of three-second-order equations is obtained in the domain 5 with Neumann-type boundary
conditions. For zero twist o the equations reduce to the appropriate Saint-Venant type equations.

Remark. The problem of extensior-torsion of a naturally twisted rod was considered in /4/.
In this paper there are basic considerations about the selection of dependences of the projections
of the displacements on the Cartesian axes on the accompanying coordinates as desired functions.
The difference from what is elucidated above is in the selection of the displacement modes.
They are taken in the form (compare with (4.1})

w= ¥ E), wg= Qe PP (EY) o — a0 B

and comprise equations to determine the desired functions ¥, f @. In this connection, equations
of higher order were obtained than those which can be obtained by starting from (4.1) and (4.3).
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Therefore, the result of Sect.4 can be interpreted as proof of the possibility of reducing the
order of the system of governing Egs./[4/.

5. Variational principle. & system of eguations of the extension-torsion problem for
a rod can be obtained as a system of Euler egquations for the functional

I =y (5.1)
2U = A (ea® + £as)? + 24 (00870 -+ 200587 -+ £357)

where the deformation components are expressed in terms of the functions w, W, by means of
(4.2) and the minimum is sought over all functions w, w, for fixed parameters y and Q. This
assertion is confirmed by direct calculation.

If solid motions are eliminated by the conditions

{wy = 0, {eqpurtty = 0
then the functional (5.1) becames strictly convex and it can be asserted that the solution of

the problem exists and is unique.
The lower boundary of the functional [ is a quadratic form in the parameters y and Q

I = 1, (Ey* + 2ByQ + CQY) {5.2)
The following formulas hold

T = ol/dy = Ey + BQ, M = 8]/9Q = By + CQ (5.3)

Consequently, the coefficient £ has the meaning of an effective Young's modulus, the
coefficient € is the rod torsion stiffness, and the coefficient B describes the cross effect
of the origination of extension forces during torsion and of a torque during tension.

Let us prove (5.3). We give arbitrary increments &y, 8@ to the parameters y and Q. The
minimizing functions »° and w,° also receive certain increments &w® 6u,° here. The change in
the minimum value of the functional & will equal

81 = 0™, EP60 + o¥byp = M6Q + Tdy {5-4)

The terms containing 6u® and é&uw,® are cancelled by virtue of the Euler equations of the

functional I. And (5.3) follows from (5.4) and (5.2).

6. Dual variational principle and stress functions. The dual variational
principle is formulated as follows:

I =sup [{o™et’s Q + (%3 7 — (U*)] @1
U* == [(1 + v)(0%3a,, + 206M30,5 + (0%)%) — v (0% + %] /(2E)

Bere the upper bound is sought over all functions o*f. 073, 0°° satisfying the equilibrium
Eqs.(4.3) andthe boundary conditions (2.4). It is constructed according to the general rule
{(/5/, Sect.3, Ch.II).

We construct the general solution of (4.3) by introducing the appropriate stress functions,
The second equation of (4.3) means that a function 7% exists such that the following equality
holds: 075 — c0eE90Y = by 4 (6.2)

The quantity o¢% does not occur in the first equation in (4.3}, hence, ¢* and x can be
regarded as arbitrary functions, and Egs.(6.2) here express the quantity 0%% in terms of ¢%
and ¥.

We examine the expression wef.of® in the first equation of (4.3). According to (6.2} it
can be rewritten in the form

weptoPd = iy % 2208 (6.3)

Without loss of generality, the function ¢® can be represented in the form

0% = 3y — By (6.4)

Indeed, {6.4) in the r.€& polar coordinate system reduces to the ordinary differential
equation 3¢ — rdy dr = ¢®, which enables ¥ to be evaluated in terms of o¥.

Direct substitution verifies that after (6.4) has been substituted, (6.3} reduces to the
equation

wef0P == (b7 — wHGEED) 5 (6.5)
By virtue of (6.5) the first equilibrium equation in (4.3) takes the form
(0% — welEogat & Wy 8% — wPESER) p =0 {6.6)

which means that functions ¢% exist such that
0°F — we 50078 L w78 — WP = efrg’ 6.7)
It remains to satisfy the symmetry condition of the tensor o¢%* in o, § which is obtained
by convolution of Eg.(6.7) with e

0Fa0%8 == ¢l = wiae®Py, p = (0e%Eay) 5 (6.8)
The relationship (6.2) is used here, Formula (6.8) means that the vector ¢¢ — we*Bizy has
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zero divergence, i.e., a function ¢ exists such that
9 + wetloy =g g (6.9)
Thus, the general solution of the equilibrium equation is expressed in terms of three

functions . 4 and ¥ hxr means of the formulas
--------- . % anc 3} eans ©I IThe ITeimulas

0% = e2beblg o -+ 0 [ed Eoemhy 5 o e99EgePhy o — 2898y ] (6.10)

w? e RN (By - BVw ) L pEoEh]
bl O S0 2k AVY TR YV T

0%3 == e@By p + wegt® (3¢ + EV,v)
¥ =3y + Py y

The function ¢ is the analogue of the Airy function while the function j is the torsion
function.

Let us determine what arbitrariness remains in the stress functions for a fixed state of
stress. It is evidently sufficient to consider the case of a zero state of stress. Setting
g%h = 0% = ¢® = (0, we obtain

Ya==0, 3¢ +P¢y=0, e““eﬁ’-&p‘p;\ — 203898 4 MpEoEs = 0

It follows from the first eguation that y = ¢ == const. The second equation is integrated
in polar coordinates: 1 = g {B)r73 We will rnns;dm' the origin to lie in the domain § and
the stress functions under consideration to have no s:.ngularltles in S. Then Y= 0 and the
third equation yields ¢ = const — ¢ot® + welot®, where ¢, are constants Thus, the functlon %

is annm-\nnﬁ apart from the constant o, the function o toc the aceu
----- mined, apa om istant ¢, the Iunction ¢ to the accu

and the term mcEag“ while the function §¥ has no arbitrariness.

According to (6.2} and the second boundary condition (2.4), the function 7Y is constant
an AS AmmemwRmm b I8 TY 16 DY memdd Flammd emtsan T mnnns pmman I I o~ £ AN e Farmpmded mm oo
i Vat . A VLY i Y0 7 j g Y. 2 [=S¥iey usc Py UU\AI}UGLY \.UIIUJ. .LUIS A LT JUnL LA l,f

satisfies the following equation on the boundary of the domain §

d .

= (628 g 0eFBEgy) = Ve — (6.11)
Here s is the length of the arc along 4S5, and it is assumed that the domain § remains

on the left during motion along &8 in the direction of the tangent vector 1% = di2'ds while

the normal vector +° is directed outside 5 s¢ that +* = %tk 1% = efivg,

In a simply-connected domain the function ¥ can be assumed to be zero on 6§. consequently,
the relationship (6.11) between ¢ and { acquires the form

;
g wf e p2yptataa b

e (€% 1) = — W EXE (6.12)

We concider the functional in (€.1) as a functional of the functions ¥ and y. which is

consider the functional in (£.1) as & functional of the functions g,y and y, which is

obtained by substituting (6.10) into (6.1) instead of the stress tensor components. The dual
variational principle in the stress functions is formulated as follows: the true state of stress
brings the maximum toc the functional in (6.1} in the set of functions ¢. V. y satisfying the
constraint (6.11) and the condition ¥ = const on 88, Por a simply-connected domain they can
be replaced by (6.12) and the condition % =0 on 4S5,

7. Some estimates. The roughest estimate of the effective stiffnesses is obtained
ifweset w = ug = 0. We have from (5.1), (5.2) and (4.2)

an /v."\ - 1 LR L DAY + - r o~ L3
OOy U A = 200 S 9T — rIgR

PN ? B
2 (Ey® — 2By

0

cc‘:F> and | S| is
= af,, u = 1 hyptuif

Here the inerti
the area of the domai
and the unknown coefficients a and b,y are sought from the conditicn of the minimum of the
functional (5.1). Then we finéd from (5,1}, (5.2) and (4.2}

ia tenscr of the transverse section is denoted by I# = {
in §. A more exact estimate is obtained if we set u,

n oo, AT ex L& [ o ab=

Py (E*;: ~ 2ByQ - CQ%) < Yy (£ = 2B — C*0Y) (7.1%
E = I8~ 20 =) 0y, — I,)? Al

B o= —Em (11“"1?)2.’3

Co=plle = (I~ L)AL =00 ], = I%

A= =1+ 0 22 p) 8~ 8N, —

vt {f — 1 — 2v) | St

If the rod is not twisted {2 = 0}. then, as is easy to see, B = {0 and the ineguality

{7.1) reduces to the estimate £ < E 81 € < 4u (f - I,). The former yields the exact value

/.4 reqduces to the eslimate L 5 £ 0 00§y 2 1 — L9}, Ine IOYmer yieics the

of the leongitudinal stiffness for anuntwisted od, w hile the latter is the Nikeolai inequality
/6/.

TE el Fwicgk () ie Ot 2
i wne U ST B 15 nlt 2
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ELE, B —~BP(C*=CY(E*—E), CLC (7.2)

The quantity A in (7.1) is non-negative, hence E* decreases as the twist increases.
Therefore, according to {7.2) the effective Young's modulus of a twisted rod with arbitrary
transverse section is less than for an untwisted rod with the same transverse section. In
the limit as @ — o0 the quantity E* reduces to the value

E|SIH—(1+v)(1—2v)(x— 2v)1],
x=(1 =[S -, — 1)

The second inequality estimates the amplitude of the cross effect. The third is a
generalization of the Nikolai inequality to a naturally twisted rod.

We present the values of E*, B*, {* for elliptical sections (%e® + E¥/0* 1) with semi-
axis ratio ¢ = b/a

E*=FEnab 1 — @ (1 + %) {1 — 22 (1 + ¢ + Fa)) {7.3)
B* = —Eonba® (1 — c2)¥(4 (1 + ¢ + B%a))

Ct = pnba® ic? + @ (1 + ¢*) a/4l/(1 + ¢* + Da)

B=agw a={l—v—v) {1 +c) =¥ {1 —v — 3)/(1 —2v)

The estimates (7.2) are valid for rods with arbitrary centrally symmetric section. In
order to characterize the error of these estimates, we construct a lower bound of the effective
characteristics for an elliptical section. We set y = A EYat + BV — 1), 90 = Y, (B}, +
Bt A, B, B, are constants. Then the boundary condition for ¥ is satisfied while the
boundary condition for (6.12) takes the form

(Byla* + w™) &, =0, (B + o) E =0 (7.4)
We take the simplest expression for the function §, thus ¢ = B/w®. The condition (7.4)
will be satisfied if we set B, = —Bb, B, = —Bg® We select the constants & and B from the
condition of maximum of the functional (6.1). We obtain from (6.10) and {(6.1)
Yy (B9t = 2B3Q + €00 < ¥y (Ey? + 2ByQ + €9 (.5)

E-=EunEg=E|S|{1 =3 (1 +%) (1 =2 +c))
B~ = —Ewaba® (1 — DL + %)
C=up -:‘jfj’ij =B+l —ct)y —8(1 +v) (1 + ) —

8(38 + 22v) A} {48 (1 + )2 (1 + )Y

The expressions for £E-, B-, (- are presented for the case of small twists © (the terms
containing &° and higher powers of  are omitted) and c¢<X1. It is seen from a comparison
of (7.3) and (7.5) that for small ©@ the upper and lower bounds of the effective Young's
modulus converge for rods of elliptical section and define its exact value: E = Er=E =F,
The difference between the effective Young's modulus of the twisted and untwisted rods is
characterized by the following mumbers: for © = 0.5, ¢ = 0.1, v = 0.3 the effective Young's
modulus for the twisted rod is 16% less.

The expressions for (~ and C dc not agree in the case of small twists. This indicates
that the selected allowable fields are good enough to approximate the state of stress caused
by extension and unsatisfactory to describe torsion.

The cross coefficients in the lower and upper estimates B~ and B~ agree in the limit of
small twists; however, because of the difference between (~ and (' this does not enable us to
give an exact value of B.

The case when the problem contains small parameters, small twist or small thickness of the
transverse section (elongated section), allows of a full asymptotic investigation.

We consider here the case of rods with elongated sections, which is often encountered in
engineering applications (see /7/).

8. Elongated sections. we consider a rod with cross-sections for which the coordinate
axes are the axes of symmetry. We consider part of the boundary 85 with § >0 to be projected
single-valuedly on the axis I; and its equation to be written in the form & =2 () 1§ (<o We
let b denote the maximum value of h. By assumption h is an even function of §,. that varies
slightly at distances of the order of b and b <£a.

We perform an asymptotic analysis of the functional (5.1). We rewrite the elastic energy
density in the form

2 = Erggt + FUY® {Fap = vemdag) (ryg -+ Vrashy,) + dpe 0™ 8.1
E2Y0 oy 8OO L (87VRRE . g0VR0

The strain is replaced in (8.1) by their expression in terms of the displacement (4.2),
and new desired functions 1, are introduced in place of w», by means of the formula w, =
—vyt, =~ v, We obtain
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A=u

W E(y— ol , ol )+ w? (B, —Eaw )P+ (8.2)

/ 1 1
5 X {ps 2 2 2
T T . Tk P s M R s +"’1,2"2.1>“‘

s (v, g4 vy ) G =B Vb, o+ R0 — er— 0k, ,

Wiary VR, — 02 o — by, - ol )

It is seen from this expression that the minimizing functions w and v, are odd functions
of §, {and therefore equal zero for §{,= 0). while 1, is an even function of . The proof is
carried out exactly as the proof of the analogous assertion in /8/.

We shall assume that the twist not small and av ~1. We will find the orders of the
desired functions. Poisson's ratio is obviously not essential in determining the orders of
the functions; consequently we assume 2= 0.

If y=Q = 0. then the minimizing functions of the functional U also equal zero. The
difference of the solutions from zeroc is generated by the cross terms between 1y @ and the
desired functions. Consequently, a rough estimation of the orders reduces to retaining just
the principal terms in the desired functions and the practical cross terms in the functional,
In extracting the principal terms we consider the derivatives of the desired functions with
respect to §, to be very much greater than the derivatives with respect to §,. For this
reason, all the underlined terms in (8.2) can be discarded as small compared with the preceding
terms. Kegeping the principal terms in U we obtain

. . / , ) . . e
20U == — 2Ew';*;,u" st i, - 1-13. R B (e 205000y — 25500%0, o)+ (8.3)

sais

2 . . e - "
BT, — 2u'( JE1 = 25 ufhey - 200E, )

R

Here all the cross terms between the desired functions are omitted since a rough estimate
is made of the orders; moreover the terms FEw?f%r,® and pe?}?n.?, which have the same form as
the retained terms puw ¢ and ur % are omitted, and de not influence the order of the desired
functions. Minimizing the simplified functional Uy with respect to w and ;. we find (it is
here necesgsary to take into account that w=r1,=10 for =14

u o~ ab (@ = wyi, vy ~ @200 (&.4)

However, the problem of the minimum of the functional [;. with respect to u turns ocut
tc be incorrect: shifts in v by a constant can carry the value of the functiopal to —o
Consequently, the intitial assumption on the nature of the behaviour of 1 must be altered
somewhat., We extract the constant compcnent in &, from the functien 1. Without loss cf
generality, we can write 1= u(§;-- (% % where the function v satisfies the condition . =
(-, is the integral with respect tc § within the limits [-—b b)), We consider that (vl >ty
and by defining u (), we £find the order of .. Theprincipal termin v willbe pc;*. theprincipal
cross term between r and Q is —2peQiir. the cross term ZueQur equals zerobyvirtue of the
condition <r = 0. The problemof finding ¢ is now correct and shows that v ~ ab’el.

For w=r, =10 the value of the functicnal has the order g (y® - ¢®Q% b, It is clear that
this is the greatest possible order of any cf the energy terms. We write u, for the greatest
possikle order ¢ — o, and u for the order (v — a2 a and we extract the principal terms in the

[
energy (§.2) by using the estimates cited. Keeping only the principal terms we obtain

AE o . .
W=E g —ebw )+ g o, R .5
T O I g T T T 30 = ou = 0fr, o7

B

all the terms in the energy are of the order p{y+ aQp (for ee~1). and all the discarded
terms are righer-order irnfinitesimals. Therefore, (8.5, vields the value cf the energy tc a
first aprroximation.

The energy depends cn the functions w and u only in terms of the derivatives wy and v
Consequently, u, and w,, can be selected as new independent desired functions. Then minimizing
LU with respect tc w and &, reduces to an algebraic problem of minimizing the guadratic
form (8.5) in the arguments w,, and v, The minimum is achieved on the functions

1 . N
vy = — O [pwﬂif by peti — = (BB o+ () 05 (2 +

1
wEY) — R, (u — ) — p'-'u):’,,uj‘ T

we A7 50 4 Fehiy + 20 (uy F i)+ gl — poul §;

D= 2n b Ip = (= pA] 2, A = o LE RO et

The energy here becomes a functional of u
a
Uy= S (au? | — 2Bu )+ u? — 2ow e D ) k(%) d%y - (8.6)

—a
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a=l+29~-§®'ix’—’§(i~ bty W’Ex)
ﬁu%(pn—{.Emy)mE\’-*-%'[FQ—%E‘(PQ'FE@?)] (1= 2EE sg)or
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£ o+ oy ] (1-

n=pm’£z[k %(1 H-p' "’)("‘ki“)

A
empmilﬂ-—%mil(}m«}-lz‘my)— = qu- 7 )w’E,’

This problem reduces to solving one ordinary second-order differential equation with
variable coefficients and is a computer problem in the general case.

9. Rods with elongated elliptical sections. Let h(f)=y1=E%a. In place of the
variable § we introduce the variable z by means of the formula § =acosz, 02t and we
define the dimensionless displacement and the initial twist by the egqualities uw= g, © = 8w,
Q=af). Then according to (5.2) and (8.6), the effective stiffnesses are given by the formulas

n b
E _ E
E= 2Eba{ sintz [1 — 7{02 costs — T ( ) @‘costz ]d:-{- - mf— g(au‘ o Bu - 2£,u)a’x} 9.1
0
;" n
C—2pba{5 Tz ‘!~%) cos’:——ﬁ-'(i t ) m‘cos‘:] dz 4 inl. S{uu +bu3—2hgu)dz} (9.2
A D v
[ ’ [
" ( - AS R -
. — 2w 1Y A -
B = 2Eta {;{sin%(-—-%mcos‘z-;— = TIA'. Li -3 ¢ j} wleestz )—- v ?QU(, ]a’x
- M - ) (n += )7 —
1-:p—_<E+ }.Tp/m-ms'l‘ D=/.~¢—2;lx-¢[p-—“_‘——]wzcgszx
- 2 . 32 = R
a=2 T——:mzcos-z—ﬁ(i— —— w? Cos II}
- - A~ L. 17
chz{smzm[i-——% - % (1 - —21) w-moszz]—— 5 Lﬂan (7;:'4'
W A - B |
_— — — Teostzr ) |1 = i
7] (\1 i w* €O 1/ f 3 ) } ’{
T o . { 7. Bih—uw) /.-f—p_‘c 5}\‘
=3 - ! e r &1} —_—— s — e 2
=21~ &co\ x 111,‘ 3 5 k Ewicosta 4; ‘x-}»
sinfzcos.rf——E-~~ H(l—._'}“ (11— 3-—:51'!:;““53:]‘
L 4 DA \ 4 i
- - » oy =y B e '
2= w! Lco: rsinz {\.,_i. - —/_D.—(i - _1_‘_:1_.’ {\J— 3 Pm-’cos’z)}]g-;
in?zec _.E._L" ,_}'_'" \‘25:'@ 1
sin zcosx[i 3 5 Ll 3 /} cos 1]
The functions ¢,°. 7,5 that yield the minimum of the functicnals (9.1) and (9.2 are
found from the solution of the boundary value problems
Tigmae Tl lpm s — M =—igy dg, =0 for z=0=a .3

In the case of small twists, the effective moduli are found analytically

E = E|aba — Y, (1 + v) nbaT?], B = —V/ Enbaiy.
C=1hp {1+ vtba@?

Within the framework of the asymptotic expression under consideration bae« 1 the torsional
stiffness C is not in the clssical term pnb*a since it is small asymptotically with respect
to that written down {(for ¥~ 1). It is seen that the effective Young's modulus decreases as
the rod twists while the torsicnal stiffness increases,

Problems (2.3) were solved by grid factorization. The effective moduli £,B, ¢ were
evaluated by numerical integration. The values of the functions E,= E.(2fbae). B, = B/(2Eta), C, =
C/(2ube) are represented in Fig.2 as functions of the parameter & for different Poisson's
ratios v, where the solid lines refer tc B, the dashes to (., and the dash-dot lines to E,. The
graphs show that as the twist increases the torsional stiffness grows although © < 1.4-1.2. and
then starts to decrease, The cross coefficient B, behaves analogously, while the cross effects
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are most noticeable for values of the twist of 0.7—

0.2 VAN xY -—— 2 N a Mha affambiva Ymunate meadiilnue Aocrasassas mono
8 // /T b“ Vel i€ TLiTlLivE 104Ny S WoQuLus u:\.;cnaea HURO-=
Ve N\ N
il \< D=0.5 tonically as the twist grows.
\ f/ N \< The presence of the descending branch for the
»i}:\ effective coefficients can be Exp;.a.meu as follows:
j .\\ NNy for small twists practically the whole section operates
0‘1 7. - 1 : : X .
AN AN at torsion and extension, while for large twists only
’/ ‘\ \\s‘q,%‘ whe nucilieus OI TNe section opérates, That shrinks
X \\\\ "“"\\\\\\ to the maximal circle inscribed in the cross-section
N -~ :
g_\.s_z??@ Ty as the twist grows.
73 P .
=N Ty 10. Reduction of the system of equations

Let us formulate a general method for passing from the

o
z ‘Q‘W of the spatial theory of elasticity to systems
/ | of two-dimensional equations on a rod section.

/ system of three-dimensional Eqgs. (2.1)—(2.4) to systems
—0.1 / of equations on sections of a nafurallv twisted rod.
We will seek the solution of problem (2,1)=-(2.4) in
/ the form
3/ o=t (8) & 100 + gMa+ B eugt? ~ @M 1 ral  (10.4)
U‘=%(§)§°’+I“0a+g°Mo+u(§) -+ e el + 1T, Yo =
-0.2 ¢o — Dug
Here T, M are the tensile force and torgue, (,.
Fig.2 M, are components of the transverse force and bending

moment vectors for which the change along the axis
is given by egquilibrium integral Egs. (3.3)—(3.5), u{§).us(f) are the longitudinal and
transverse displacements of the axis, 6 () is the angle of rotation in the plane of the section,
Y, are the transverse angles of section rotation including the shear, 120, 19, 849 g% e,. ¢
r,.r are the desired functions of the coordinate &% Without loss of generality, conditions
determining the sense of the kinematic variakle u. u,.0.4Y, can be imposed on the functions in
the displacement (10.1):

= ey =7 =={ {10.2)
B lrelty =10 {10.3;
7, = () {10.4)

fas = fio 0@ + € o Mo+ g M — ro g, T (10.5)

e, = ¢, — Qe

v
o
x4

22“-’:' Qu—‘:Dql
The guantities <. .. Q. ¢, in (10.5) have the meaning of "rod" measures of the extension
of the axis, the bending, the tcrsion, and the shear. We relate them to the forces and
moments by using the compliance matrix
Y= 100~ p" Mo =T — pl (10.6)

Go=0."Qy = bac-uo T - seM

Qp=0%Qq — do® Mo = poT — M

Q=0 = joUs— iT — jM

The coefficients ¢f the compliance matrix are still undetermined constants. We calculate

the stress (2.2) by means of the strain (10.5) under the condition (10.6) and we substitute
it into system (2.1) and the boundary conditions {2.4). Egquating the coefficients of the
forces and moments to zero, we oObtain a system of two-dimensional equations in the desired
functions 9 [0, g,% g% €q. €. 75 T

rm;\ g% 0¥y 0 B et pefe
ha T B~ Ivar T Bifle ) T Yia T &

glal~rea” = p[ D" + be® = eaplt (Di® + )} =
BI5 -+ (D524 g ] -+ (1 20y (D3O 2Dg°) + A fﬁf.‘ + ga)+
(% - 2u) [ Dt L p% o E* (Dee® + do%)] =0
[(Dg°),a + g, ‘] p (2gm B+ Dglu + [Pga®) = 140 -+ (10.8)
Ee 13 (UDQ - é’asC’Ll] ): 0

[
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a
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R[2%5 + (Dgo%),2] -+ (+ + 21) D*g® + ADggt + (1 4 2p) x (Dp° + §2Dd.%) =10

A{(De)a -+ ev%] + 1 (2ec’s) + De,o + Deq) + Ao -+ pDse =0 (10.9)
p[e% + (Deg),2] + (A + 2p) D% + ADeg™+ (A + 2p) E*Dgy =0
AUDD, & + 1y k] + B (2re,b) + Dr.o -+ D3ro) + Apy + pDhg =0 (10.10)

B[ + (Dra) 2]+ (b + 28) Dr =+ ADro+ (2 + 2p) $Dpa =0

and a system of Neumann-type boundary conditions
(M (Df + g° + f77) 8ap + 1 (2fia,8) — 0wt (fla + Dfo® + 8a°)) + (10.11)
At 4+ ev9FY) Sap — HevpEY (2.7 + €oyE¥i0)] vB = O
[ (e + Dfa® + g6°) — wepal® (A + 2) (Df° + £°) + A1) +
B (20° + €aglPi®) — (A + 2u) wepalP (1° + E¥ey7)]ve =0
[A(Dgo + £V) Bap + B (280, p) — 0ewpl” (€0 + D))+ {10.12)
A (p° + dvogv) 6&5 - P:neva&' a° + eavg\’jo )} vP =0
[1 (8% + Dga®) — wepal? (A + 2n) Dg® + Agy)) -+ (b + €asf?i®) —
(A + 2u) wealP (0° 4 £¥d,°)] v =0
(% (De + &) Bap + 1 (2600, — Gevs?® (6,0 + Dea)) + (10.13)
A(p + g%EY) ‘50.5 - Pmevagv (Sa + eayt¥f)] vE=0
[1(e.0 + Deg) — weyal ((+ + 2p) De + M\v) + W (Sa - eqpl?f) —
(% + 2p) wegak® {p + Fgy)} v =10
[A(Dr = 73) 8ap + B (2ria,py — wevpd® (.o + Dra)) + (10.14)
At = pokY) 8ap — poeyst” (o + eayk¥i)}vE =0
[ (r.a == Dre) — wewel” (A + 28) Dr + Aryl) + p (ha -+ eapffi) —
(A + 2u) wegado (¢ + EVpy)]ve =0

Problem {(10.7)—(10.14) consists of six Egs.{10.8) with boundary conditions {(10.12) in
the six functions g7, g7, six Eqs.(10.7) with the boundary conditions (10.11) in the 12
desired functions g%, g% /% f,¥ and two systems of identical structure (10.9), ({10.10) with
the boundary conditions (10.13), (10.14) in the three desired functions e, e, and r, ry, respectively
in each. Under the constraints (10.2)—(10.4), problem (10.7)-(10.14) with the addition of
the equation of state (3.1) is solvable single-valuedly.

The functions f.%, g7, ft g% and g, €, 7., r respectively characterize the bending and
stretching-torsion of the rod. 1In the general case, the solution of the bending problem is
combined with the problem of longitudinally torsional deformation in terms of the coefficients
of the compliance matrix. If the axis of the natural twist z° coincides with the axis of the
centres of gravity of the transverse sections, and the section is centrally-symmetric about
this axis, it can be confirmed that the problem of rod deformation decomposes into two
independent problems, one of which describes the bending and the other the longitudinally
torsional deformations.
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